Documentation
Core Concepts
Understanding Webdriver's Solana optimization technology.
API Reference
Comprehensive API documentation and examples.
Advanced Usage
Fine-tuning and advanced optimization features.
Installation
Python
01pip install Webdriver-solana
JavaScript/TypeScript
01npm install @Webdriver/sdk
Quick Start
Get started with Webdriver's Solana optimization layer in minutes. Follow these examples to deploy and monitor your optimization layer.
Python Implementation
01from Webdriver.solana import NetworkOptimizer02import asyncio0304async def optimize_network():05 # Initialize network optimizer06 optimizer = NetworkOptimizer(07 network="mainnet-beta",08 config={09 "sharding": {10 "enabled": True,11 "shard_count": 16,12 "dynamic_scaling": True13 },14 "memory_pool": {15 "optimization_level": "aggressive",16 "gc_interval": "50ms"17 }18 }19 )2021 # Deploy optimization layer22 deployment = await optimizer.deploy()2324 # Monitor performance25 async for stats in deployment.stream_stats():26 print(f"Current TPS: {stats.current_tps}")27 print(f"Latency: {stats.latency_ms}ms")
TypeScript Implementation
01import { NetworkOptimizer } from '@Webdriver/sdk';0203const optimizer = new NetworkOptimizer({04 network: 'mainnet-beta',05 config: {06 sharding: {07 enabled: true,08 shardCount: 16,09 dynamicScaling: true10 },11 memoryPool: {12 optimizationLevel: 'aggressive',13 gcInterval: '50ms'14 }15 }16});1718// Deploy and monitor19const deployment = await optimizer.deploy();20deployment.on('stats', (stats) => {21 console.log(`Current TPS: ${stats.currentTps}`);22 console.log(`Latency: ${stats.latencyMs}ms`);23});
Core Concepts
Parallel Processing
Webdriver's parallel processing engine divides transactions into optimal shards, enabling concurrent processing while maintaining Solana's security guarantees. The system automatically adjusts shard sizes and batch parameters based on network conditions.
Memory Pool Optimization
Our advanced memory pool management system optimizes transaction queuing and prioritization, reducing memory bottlenecks and improving network throughput. The system uses AI to predict and prevent memory congestion before it occurs.
Dynamic Routing
Webdriver's dynamic routing system continuously analyzes network conditions and adjusts transaction paths to minimize latency and maximize throughput. The system includes automatic failover and load balancing capabilities.
Advanced Usage
Custom Optimization
Fine-tune the optimization layer for your specific needs with custom configuration options.
01optimizer.configure({02 sharding: {03 algorithm: "adaptive",04 min_shard_size: "256MB",05 max_shards: 3206 },07 routing: {08 prioritization: "latency",09 max_paths: 8,10 rebalance_interval: "50ms"11 }12})
Performance Tuning
Advanced settings for optimizing performance in high-load scenarios.
01await deployment.tune({02 target_tps: 100_000,03 max_latency_ms: 5,04 memory_limit: "16GB",05 gc_aggressive: true06})
Monitoring
Real-time monitoring and alerting capabilities.
01deployment.monitor({02 metrics: ["tps", "latency", "memory"],03 alert_thresholds: {04 tps_drop: 0.3,05 latency_spike: 100,06 memory_usage: 0.907 },08 callback: (alert) => {09 console.log(`Alert: ${alert.type} - ${alert.message}`)10 }11})